Not quite so broken

Protocol implementations have lots of security flaws. The immediate causes of these are often programming errors, e.g. in memory management, but the root causes are more fundamental: the challenges of interpreting the ambiguous prose specification (RFCs), the complexities inherent in large APIs and code bases, inherently unsafe programming choices, and the impossibility of directly testing conformance between implementations and the specification.
Not-quite-so-broken is the theme of our re-engineered approach to security protocol specification and implementation that addresses these root causes. The same code serves two roles: it is both a specification, executable as a test oracle to check conformance of traces from arbitrary implementations, and a usable implementation; a modular and declarative programming style provides clean separation between its components. Many security flaws are thus excluded by construction.
Read more in our paper: Not-quite-so-broken TLS: lessons in re-engineering a security protocol specification and implementation by David Kaloper-Meršinjak, Hannes Mehnert, Anil Madhavapeddy and Peter Sewell, published at Usenix Security 2015. We implemented some libraries in OCaml using this approach:
	TLS (API documentation), the most widely used security protocol on the Internet (
	X.509 (API documentation)certificate handling (including public and private RSA keys (PKCS8), certificate signing requests (PKCS10))
	ASN.1 (API documentation) parser and unparser combinators
	nocrypto (API documentation) underlying cryptographic primitives (symmetric: ARC4, 3DES, AES (ECB/CBC/CCM/CTR/GCM); hash: MD5, SHA1, SHA2; asymmetric: DH, DSA, RSA; CSPRNG: Fortuna)
	OTR (API documentation), the Off-the-record protocol

Code using nqsb:
	MirageOS, a library operating system
	BTC Piñata, our bitcoin bait
	TLS handshake visualisation, our interactive visualisation
	libnqsb-tls, bindings to C which implement the libtls interface (drop-in replacement for libtls.so)
	tlstunnel, an application handling TLS, forwarding the plaintext to another service via TCP
	tlstools, some TLS utilities
	certify, an application to generate certificates, certificate signing requests, and basic CA signing
	mirage-seal, an application which produces a stand-alone unikernel serving a directory via https
	tlsclient, a TLS client
	jackline, a terminal XMPP client using OTR and TLS
	pcap trace checker, which lets you validate recorded TLS sessions

Texts about nqsb:
	hannes blog: full stack engineer
	(paper) 2016-09-23 @OCaml2016: OCaml inside: a drop-in replacement for libtls
	(paper) 2016-02-21 @TRON: Not-quite-so-broken TLS 1.3 Mechanised Conformance Checking
	(paper) 2015-08-10 @UsenixSecurity: Not-quite-so-broken TLS: lessons in re-engineering a security protocol specification and implementation
	2015-07-22: Organized chaos: managing randomness
	2015-07-07: Easy HTTPS Unikernels with mirage-seal
	2015-06-29: Reviewing the Bitcoin Pinata
	2015-06-26: MirageOS v2.5 with full TLS support
	2015-06-26: Why OCaml-TLS?
	2015-02-10: Smash the Bitcoin Pinata for fun and profit! (Amir's post, MirageOS post, (german) Golem post)
	(video) 2014-12-27 @31c3: Trustworthy secure modular operating system engineering
	2014-07-14: Protocol implementation and mitigations to known attacks
	2014-07-11: ASN.1 and notation embedding
	2014-07-10: Adventures in X.509 certificate parsing and validation
	2014-07-09: Building the nocrypto library core
	2014-07-08: Introducing transport layer security (TLS) in pure OCaml

Parts of this work were supported by REMS: Rigorous Engineering for Mainstream Systems EPSRC Programme Grant EP/K008528/1, and by the European Union’s Seventh Framework Programme FP7/2007–2013 under the User Centric Networking project (no. 611001).
Thanks to IPredator for hosting.

